
Interna

Artifi
Mach
Supp

Morteza

Morteza Ra
Technology
Ali Kourank
Seyed Reza

KEYWOR

Supply chain
Scheduling,
Distribution
Batching,
Artificial im

Two key o
scheduling
operations.
integrate o
functions a
coordinated
operational
problems

**

Correspondin
Email: rasti@c
Received 21 Ju
2016

IInntteerrnnaattii

ational Jour

icial
hine

ply Ch

Rasti-Bar

asti-Barzoki, A

k Beheshti, Ph
Hejazi, Profe

RDS

n management

n,

mmune system

1. Intro
operational fu

are prod
 In a supp

or simultane
and plan and
d manner
l performan
did not c

ng author: Mort
cc.iut.ac.ir
une 2015; revise

iioonnaall JJoouurrnnaall ooff

nal of Indus

Imm
Sche

hain S

rzoki1,*, Al

Assistant Prof

h.D., Departm
essor, Departm

 A

t,

m

T
s
a
f
o
i
p
p
n
t
U
m
A
i

©
R

oduction1
functions in a
duction and
ly chain, it

eously consi
schedule the
to achieve

nce. Classic
consider dis

teza Rasti-Barzo

d 12 April 2016

IInndduussttrriiaall EEnnggiinn

strial Engin

June

htt

mune
edulin
Sched

li Kourank

fessor, Depart

ment of Indust
ment of Indust

ABSTRACT

This paper
scheduling p
a single ma
for further p
of vehicles
independen
paper, we
problem. Th
number of t
time has to
Using comp
method for
Annealing
improvemen

© 2016 IU
Reserved

a supply cha
d distributi

is critical
der these tw
em jointly in

e an optim
cal schedulin
stribution an

oki

6; accepted 25 Ap

nneeeerriinngg && PPrroodduu

eering & Pr

2016, Volume
pp. 99-1

tp://IJIEPR.

e Sy
ng a

duling

k Beheshti

tment of Indus

trial and Syste
trial and Syste

T

r addresses
problem in
achine for d
processing.
s. Also, it
t of batch s
present an

he objective
tardy jobs a
be added b

putational te
the mention
(SA). Co

nt of the AIS

UST Publica

ain
on
to

wo
n a

mal
ng
nd

pril

de
co
is
In
Sc
cl
Pr
bo
ra
pr
co
es
H

uuccttiioonn RReesseeaarrcchh

roduction Re

27, Number 2
07

.iust.ac.ir/

ystem
nd B

g Prob

i2 & Seyed

strial and Syst

ems Engineeri
ems Engineeri

s a produc
which seve

delivery to
We assume

t is assum
size, but it i
n Artificial
e is to minim
and the bat

before proce
est, we comp
ned problem

omputationa
S over the S

ation, IJIEP

elivery cost,
ost and sched
s an importa
ntegrated Pro
cheduling,
lassified the
roblems with
oth the mac
ather comp
ractical. Bu
ombined-opt
specially wit

Hall and Potts

,, JJuunnee 22001166,, VVooll

esearch (201

m fo
Batch
blem

d Reza Hej

tems Engineer

ing, Isfahan U
ing, Isfahan U

ction and o
eral jobs ha
customers

e that there
med that t
is dependen

Immune S
mize the sum
tch delivery
essing the fi
pare our m

m in literatu
al tests sh
SA.

PR. Vol. 2

, so conside
duling object
ant subject.
oduction and

namely I
ese problem
h an objectiv
chine schedu

plex. Howe
ut, the bo
timization ba
th large size
s studied the

ll.. 2277,, NNoo.. 22

16)

r Si
hing

jazi3

ring, Isfahan

University of T
University of T

outbound d
ave to be pro

or to other
is a sufficie

the delivery
nt on each t
System (AIS
m of the tota
y costs. A b
first job in e
ethod with a

ure, namely
how the

27, No. 2,

ering both t
tive in integr
Chen [1] re

d Outbound D
IPODS, mo
ms into fiv
ve function th
uling and d

ever, they
ody of lite
atch delivery
e solution, is
e problem of

ingle
in a

University of

Technology,
Technology,

distribution
ocessed on
r machines
ent number
ry cost is
trip. In this
S) for this
al weighted
batch setup
each batch.
an existing

y Simulated
significant

All Rights

he delivery
rated model
eviewed the
Distribution
odels and
ve groups.
hat consider
delivery are

are more
erature on
y problems,
s small [2].
f production

f

100 M. Rasti-Barzoki, A. Kourank Beheshti & S.R. Hejazi Artificial Immune System for Single Machine …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001166,, VVooll.. 2277,, NNoo.. 22

scheduling on a single machine under the batch
availability assumption (distribution scheduling)
with several objectives including the sum of flow
times, maximum lateness, and the number of late
jobs. Batch availability assumption means that all
the jobs forming a batch become available for
later processing or dispatch only when the entire
batch has been processed [3-6]. They presented
dynamic-programming algorithms for
minimizing the mentioned objectives with
delivery costs when the batches are to be
delivered to several customers separately [3].
This paper addresses the minimizing sum of total
weighted number of tardy jobs and delivery costs
for multi-customer in a single machine
environment and presents an AIS algorithm for
solving it for the first time. The minimum
number of tardy jobs, i.e., 1//∑ ܷ , is obtained
by the polynomial Moore's algorithm for the
single machine environment [7]. The weighted
version of problem, i.e., 1//∑ݓ ܷ, is hard [8].
For 1//∑ݓ ܷ A, a Fully Polynomial Time
Approximation Scheme, FPTAS, was provided
by Sahni [9]. Later, Gens and Levner improved it
twice [10, 11]. In addition, Hallah and Bulfin
developed Branch and Bound, B&B, method for
this problem considering zero ready time and
non-zero ready time [12, 13]. Hochbaum and
Landy proposed a dynamic programming
algorithm for the batching version of the
problem, i.e., 1/ݓ∑/ݏ ܷ , in which jobs are
processed in batches which require setup time ݏ
[14], and later Brucker and Kovalyov improved it
[15]. Nevertheless, none of these studies
considered the delivery costs. Steiner and Zhang
addressed the similar problem, i.e., scheduling
and batching problem delivery to a customer,
considering the minimizing sum of the total
weighted number of tardy jobs and delivery costs
on the single machine with batch setup time; they
presented optimal properties and a pseudo-
polynomial time DP algorithm for the optimal
solution [16]. Also, they presented a pseudo-
polynomial DP and an FPTAS for restricted case
of multicustomer, where tardy jobs are delivered
separately at the end of schedule [17]. Recently,
Assarzadegan and Rasti-Barzoki [18] have
studied the problem of minimizing the maximum
tardiness, due date assignment, and delivery costs
on a single machine. They presented two
mathematical programming models and two
metaheuristic algorithms, an adaptive genetic
algorithm, and a parallel-simulated annealing
algorithm, for solving it.
Some researchers have applied metaheuristic
algorithms to solve scheduling problem [19-21].

In this research, we present an AIS method for
this problem and compare it with SA and MINLP
approaches introduced by Mazdeh et al. using
computational test [22]. 1/ݏ/ܸ	ሺ∞,∞ሻ, /ݐܿ݁ݎ݅݀
݇/∑ ݓ

ୀଵ ܷ ∑ ߠ

ୀଵ ܤ is representation of

our problems regarding notation that Chen [1]
introduced for these types of problems. This
notation means that there is the single machine
for processing jobs with batch setup time, ݏ, and
sufficient vehicle by unlimited capacity and
directing delivery method for sending the batches
to ܭ customers. Directing delivery method means
that orders are transmitted to each customer
without the routing problem. ∑ ݓ

ୀଵ ܷ is the

total weighted number of tardy jobs and
∑ ߠ

ୀଵ ܤ is the total delivery costs where ߠ

and ܤ are delivery costs unit and the number of
batches for each customer, respectively. Chen [1]
presented an important review on the literature
regarding integrated production and distribution
scheduling models. So, we do not go into any
more detail.
The rest of this paper is organized as follows:
Section 2 contains the problem definition. AIS
structure and our proposed algorithms are
provided in section 3. Section 4 describes and
analyzes the computational results. And, the last
section contains our conclusions.

2. Notations and Problem Definition
2-1. Notations
Indexes
݆ Job index
݇ Customer index
Parameters:
݊ Number of jobs
 Number of customers ܭ
 Batch setup time for jobs belong toݏ
customer ݇
 ݆ Processing time of job

݀ Due date of job ݆
 ݆ Weight of jobݓ
 Delivery costs for sending batch toߠ
customer ݇
Decision variables:
ܷ One if job ݆ be tardy and zero otherwise
 ݇ Number of batches for customerܤ
Immune system notations:
ܰ Number of iteration in local search
ܲܵ Population size
ߙ Local optimum factor in iteration ݅
 Mutation rate ߪ
݂ Affinity value of antibody
 Control factor of decay ߜ

101 M. Rasti-Barzoki, A. Kourank Beheshti & S.R. Hejazi Artificial Immune System for Single Machine …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001166,, VVooll.. 2277,, NNoo.. 22

2-2. Problem definition
There are ܭ customers and one manufacturer in
which each customer ݇ orders ݊݇ jobs to the
manufacturer and ݊ ൌ ∑ ݊

ୀଵ is the number of

jobs. No job can be preempted. Each job has an
important coefficient ݆ݓ. It is assumed that jobs
need one operation and manufacturer does it by a
single machine, with ݆ processing time. The due

date of job ݆ is ݆݀. Jobs are processed and sent in
batches to each customer. A batch can contain jobs
only for the same customer. This assumption is
common in literature for example see [4-6, 16, 17,
23-25]. We assume that each batch has a sequence-
independent-batch setup time ݇ݏ. There is a
sufficient number of vehicles, and the delivery
cost is independent of batch size, and it is shown
by ݇ߠ for customer ݇	for	each	trip	. The number
of batches for customer ݇ is represented by ݇ܤ
which is a decision variable. The objective is to
minimize the sum of the total weighted number of
tardy jobs and delivery costs. So, as mentioned
earlier, this problem can be shown by 1/ݏ/
ܸ	ሺ∞,∞ሻ, ∑/݇/ݐܿ݁ݎ݅݀ ݓ

ୀଵ ܷ ∑ ߠ

ୀଵ .ܤ

3. Artificial Immune System

The immune system is an information processing
and self-learning system that offers inspiration to
design AIS. In the last decade, the immune
system has drawn significant attention as a
potential source of inspiration for novel
approaches to solve complex computational
problems [26]. Some researchers used the AIS to
solve the scheduling class problems [27-33]. In
this paper, a metaheuristic algorithm based on
AIS for the first time is used to minimize the total
weighted number of tardy jobs and delivery costs
in two-level supply chain.
There are several immune algorithms such as
negative selection algorithm, clonal selection
algorithm, and artificial immune networks. In this
paper, solution procedure is based on the clonal
selection algorithm, in which only the highest
affinity antibodies proliferate. In order to
understand the AIS, some preliminary biological
terms are required to be characterized [34, 35]:
Immune cells: B-cells and T-cells are the two
main groups of immune cells. These cells help
recognize an almost limitless range of anti-genic
patterns.
Antigens (Ag): These are disease-causing
elements that are divided into two types of
antigens: self and non-self. Non-self-antigens are
disease-causing elements, whereas self-antigens
are harmless to the body.

Antibodies (Ab): It is a molecule produced by a
B-cell in response to an antigen and has the
particular property of combining specifically with
the antigen, which induced its formation.
In the biological process, when an antigen
contacts with the immune system, it releases a set
of B-cells, present in the immunological memory,
with the function of identifying and eliminating
the antigens. Those B-cells that recognize the
antigens with a minimal affinity are chosen for
cloning and the number of clones of a particular
cell is defined according to its antigen affinity.
The cells undergo somatic hypermutation after
the cloning process in order to try to eliminate the
antigen. The cloning and mutation processes are
repeated until the antigen is eliminated. Finally,
the cells with the highest affinity are included in
the immunological memory[36].
Hypermutation and receptor editing are two
important characteristics of the immune system.
They help in the maturation of the progenies, as
antibodies present in memory response must have
a higher affinity than those in the earlier primary
response. Hypermutation is similar to the
mutation operator of the genetic algorithm. The
difference lies in the rate of modification that
depends on the antigenic affinity.
In general, the antibodies with lower antigenic
affinity are hypermutated at a higher rate as
compared to the antibodies with higher antigenic
affinity. This phenomenon is known as receptor
editing, which governs the hypermutation. The
main task of hypermutation is to guide toward
local optimal, whereas receptor editing helps to
escape the local optima.
In the rest of this section, our AIS properties are
introduced in detail.
3-1. Encoding schema
In the proposed algorithm, an antibody includes
some genes, such that each gene shows the batch
number of each job. This encoding scheme is
shown in Figure 1. This Figure shows that job 1
places in batch 5, job 2 places in batch 2, and the
other jobs in the similar way.

Jobs: 1 2 3 4 5 6 7 8 9 10
Batches: 5 2 2 4 1 3 5 2 1 3

Fig. 1. Antibody encoding

As mentioned before, [22] proposed simulated
annealing algorithm to solve this problem. In
their algorithm, solutions are encoded by a matrix
depicted in Figure 2 where the rows represent the
batches and the columns represent the customers.
For instance, if the element in row 2 and column
1 is one, the first order of customer 1 is assigned

102 M. Rasti-Barzoki, A. Kourank Beheshti & S.R. Hejazi Artificial Immune System for Single Machine …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001166,, VVooll.. 2277,, NNoo.. 22

to batch 2. Therefore, for each solution, a matrix
is formed with ݊ଶelements, whereas base on our
encoding, for each solution, an array is formed
with ݊ elements.

Decision variables

(ܺ)
B

at
ch

es

(1
,…

,k
)

൭
1 0 ⋯
0 1
⋮

൱

Fig. 2. Solution encoding of SA[22]

3-2. Affinity calculation
In the proposed algorithm, it is needed to
calculate affinity of antibodies. Since the goal is
to minimize the objective function and the
affinity value should be maximized in the AIS
algorithms, the minus objective function value is
considered as the affinity value.
3-3. The proposed algorithm
The main framework of the proposed algorithm is
described as follows:

1. Initialization.
2. While (has not met stop criterion) do
3. Local search.
4. Proliferation.
5. Hypermutation.
6. New generation.
7. End.

Each steps of this algorithm is described as
follows:
I. Initialization
In this stage, a random initial population of size
ܲܵ is created. For each antibody, the value of each
gene is determined randomly in the range ሾ1, ݊ሿ in
which the value of each gene is unique. In this
paper, with the help of initial experiment, the size
of population (ܲܵ) is considered equal to 12.
II. Local search
For each antibody, the following process is done
ܰ times:
One gene is selected randomly. Then, the value
of this gene that represents the related batch is
changed to a new batch that includes either no
job or the other jobs of the customer of that gene;
consequently, the new solution is formed. Then,
the affinity value of the new solution is
calculated. If the blown equation is satisfied, the
antibody will be replaced by the new solution.

ܨܣ ܸ௪

ܨܣ ܸ
 1 ߙ (1)

Where ܨܣ ܸ is the affinity value of antibody,
ܨܣ ܸ௪ is the affinity value of the new

solution, and ߙ is the local optimum factor in
the iteration. This factor leads to escape
algorithm from local optimum. At first, ߙ value
is equal to zero; when the best solution is not
improved in three consecutive iterations, for
the first time, its value will be equal to initial
value. In each iteration, ߙ value is decreased
base on equation (2) as follows:

ାଵߙ ൌ ߙ െ
௧ߙ

ܰܶܫ െ ܨܫ 1
 (2)

Where ߙାଵ is the local optimum factor in
iteration ݅ is the local optimum factor inߙ ,1
iteration ݅, α୧୬୧୲୧ୟ୪ is the initial value of local
optimum factor, ܰܶܫ is the number of iteration,
and ܨܫ is the iteration that the value of local
optimum factor will be equal to initial value for
the first time.
With this equation, the value of local optimum
factor in the last iteration will be equal to zero.
As a result, the diversity in the primary iterations
is greater than the last iterations. In this paper,
with the help of initial experiment, the values of
 ௧ and ܰ are considered equal to 0.005 andߙ
80, respectively.
III. Proliferation
In this process, some clones are produced from
each antibody. As in Reisi and Moslehi[28], the
following equation is used to calculate the
number of clones that each antibody produces.

݊ ൌ ܲܵ ൈ (3) ܨܨܣ

Where ݊ is the number of clones, ܲܵ is the size
of the initial population, and ܨܨܣ is the
cumulative probability of the antibody. For each
antibody, ܨܨܣ is obtained by dividing its affinity
value by the sum of all the antibody affinities.
IV. Hypermutation
After the proliferation stage, the mutation
operator is performed for each clone. In mutation
procedure, one gene is selected randomly. Then,
the value of this gene that represents its batch is
changed to a new batch that includes either no
job or the other jobs of the customer of that gene.
As in Kumar et al.[34] and Agarwal et al.[35], the
mutation rate of each clone is calculated based on
the following equation:

ߪ ൌ expሺെߜ ൈ ݂ሻ (4)

Where ߪ is the mutation rate, ߜ is the control
factor of decay, and ݂ is the affinity value of
antibody. In this paper, the value of ߜ is
calculated based on equation (5):

103 M. Rasti-Barzoki, A. Kourank Beheshti & S.R. Hejazi Artificial Immune System for Single Machine …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001166,, VVooll.. 2277,, NNoo.. 22

ߜ ൌ െ
1

݂
 ̅ (5)

where ݂ ̅ is the average affinity value of the
population.
V. New population
After the hypermutation process is done and the
affinity of the hypermutated solutions are
calculated, select the fixed number (݀) of best
antibody for the next generation. In this paper,
based on initial experiment, ݀ is considered equal
to 40% of ܲܵ.
VI. Stop criterion
Using computational pre-test, the stop criterion is
considered as follows: if the best solution is not
improved after five consecutive iterations or after
a total number of 200 iterations, the algorithm
will be stopped.

4. Computational Results
In this section, in order to evaluate the
performance of AIS, both the small- and
medium-size problems are considered. The AIS
and SA algorithms were coded using Matlab
2009 and run on a computer with a 2.93 GHz
CPU and a 2.00 GB RAM. The MINLP model
was coded in GAMS and solved by BONMIN
solver, because our pre-test shows BONMIN is
the most efficient solver for solving the
mentioned problem. In small and medium-size
problems, we have compared results of the
proposed algorithm with MINLP and SA,
respectively. The details will be given in the
following related subsections.
4-1. Problems with ൌ , ૠ	ࢊࢇ	
The number of jobs in small-sized problems was
set 4, 7	ܽ݊݀	10. The number of customers for
each ݊ was defined by a uniform distribution in
the interval ሾ1, ݊ሿ. Processing times, batch setup
times, and job weights were randomly-generated
integers from the uniform distribution defined on
ሾ1	100ሿ, ሾ0	0.5̅ሿ, and ሾ1	100ሿ, respectively.
Based on the batch delivery costs values, we
generated two classes of problems, namely A and
B, for each given number of the job. For class A

and class B, the intervals that the delivery costs
were generated randomly are ሾ0	ݓഥሿ and ሾ0	10ݓഥሿ,
respectively. For each class, we generated three
subclasses, namely 1, 2, and 3, based on the due
dates values; therefore, we have six groups,
namely A-1, B-1, A-2, B-2, A-3, B-3. For groups
(A-1, B-1), (A-2, B-2), and (A-3, B-3), the
intervals that the due dates values were generated
randomly are ሾ0	0.5݊ሺ̅ݏ ݏ̅	݊ሺ	ሻሿ, ሾ0̅ ሻሿ and̅
ሾ0	5݊ሺ̅ݏ .ሻሿ, respectively̅
For each job number in each group, 10 problems
were generated randomly. Hence, totally 180
(3*2*3*10) problems in small-sized problems
were being generated and solved. A 300-second
time constraint was considered, and if the
problem could not be solved regarding this
constraint, then the procedure would no longer be
used for that problem. The results of the
experiment for small-sized problems are shown
in Table 1. Column “Number of the solution in
which” of Table 1 shows that for all problems,
AIS has produced objective function, i.e., total
cost, less or equal to MINLP model. In detail,
AIS has produced objective value the same as
MINLP for 67.22% of problems and absolutely a
better result for 32.78% of problems.
In problems with four jobs, both MINLP model
and AIS algorithm have found the optimum
solution for all problems in each group, but the
average run time of AIS algorithm is smaller than
the average run time of MINLP model for each
group of four jobs. The average run time of
problems with ݊ ൌ 4 is 0.38 second and 32.26
seconds for AIS and MINLP model, respectively.
In problems with 7 and 10 jobs, the average of
deviation in A-3 is smaller than A-2 and is
smaller than A-1 in A-2. This means that as the
due dates decrease the difference between AIS
and MINLP, objective function increases. In
addition, the average of deviation in B-1 is
smaller than A-1; in B-2, is smaller than A-2; in
B-3, is smaller than A-3. Therefore, as delivery
costs decrease the difference between AIS and
MINLP, objective function increases.

Tab. 1. The result of experiment for small-sized problems, comparing AIS with MINLP

݊
Delivery

Costs
Cclasses

Due Date
Subclass

Number of the solution in which Ave. of CPU time (s)

AIS<MINLP* AIS=MINLP MINLP<AIS MINLP AIS

4
A

1 0 10 0 48.02 0.39
2 0 10 0 41.62 0.37
3 0 10 0 7.82 0.37

B
1 0 10 0 30.95 0.36
2 0 10 0 50.21 0.36

104 M. Rasti-Barzoki, A. Kourank Beheshti & S.R. Hejazi Artificial Immune System for Single Machine …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001166,, VVooll.. 2277,, NNoo.. 22

݊
Delivery

Costs
Cclasses

Due Date
Subclass

Number of the solution in which Ave. of CPU time (s)

AIS<MINLP* AIS=MINLP MINLP<AIS MINLP AIS

3 0 10 0 14.97 0.41

7

A
1 8 2 0 - -
2 6 4 0 - -
3 0 10 0 - -

B
1 3 7 0 - -
2 4 6 0 - -
3 0 10 0 - -

10

A
1 9 1 0 - -
2 10 0 0 - -
3 1 9 0 - -

B
1 9 1 0 - -
2 8 2 0 - -
3 1 9 0 - -

*AIS<MINLP means that AIS has a better result (less total cost) than MINLP
-Since some problems have not been solved within 300 seconds by GAMS, the ave. of CPU time could not
calculated for them

4-2. Problems with ൌ , ૡ, 	ࢊࢇ	
In this section, we have compared results of our
proposed algorithm, i.e., AIS, with SA proposed
by [22] in medium-sized problems. The number
of jobs in medium-sized problems was set
50, 80, 110, ܽ݊݀	140. All parameters were

generated similar to the previous, but the number
of problems for each job number in each group
was set 20; hence, totally 480 (4*2*3*20)
problems in medium-sized problems were
generated. Table 2 shows the result of the
computational test for this problems.

Tab. 2. The result of experiment in medium-sized problems, comparing AIS with SA

Delivery

Costs
Classes

Due Date
Subclass

Number of the solution in
which

Ave. of CPU time
(s)

ࡿࡵିࡿ

ࡿࡵ
 (%)

ࡿିࡿࡵ

ࡿ
 (%)

AIS<SA AIS=SA SA<AIS SA AIS Avg. max Avg. max

50

A

1 15 0 5 1.500 5.495 3.328 18.613 0.647 5.687
2 20 0 0 1.612 4.525 13.687 58.402 0.000 0.000

3 14 6 0 1.193 3.049 51.752 475.000 0.000 0.000

B

1 18 0 2 3.548 4.639 2.738 10.109 0.041 0.768

2 16 0 4 2.840 5.031 1.992 10.634 0.043 0.412

3 14 6 0 2.402 3.123 16.253 156.690 0.000 0.000

80

A

1 20 0 0 2.645 12.279 8.976 15.738 0 0

2 19 0 1 2.564 10.788 39.997 109.396 0.089 1.772

3 20 0 0 1.917 5.701 35.094 215.205 0 0

B

1 20 0 0 4.939 12.007 6.011 28.028 0 0

2 20 0 0 4.428 12.196 8.645 61.892 0 0

3 19 1 0 4.190 7.401 24.106 155.787 0 0

110

A

1 20 0 0 4.022 22.207 14.758 42.654 0 0

2 20 0 0 3.810 15.892 30.030 95.338 0 0

3 18 2 0 2.895 9.891 50.717 300.000 0 0

B

1 20 0 0 7.781 22.657 10.256 44.755 0 0

2 20 0 0 7.302 20.461 13.377 75.304 0 0

3 19 1 0 5.488 11.302 34.832 218.156 0 0

140 A
1 20 0 0 5.037 34.630 14.564 72.348 0 0

2 20 0 0 5.250 26.626 45.090 88.867 0 0

105 M. Rasti-Barzoki, A. Kourank Beheshti & S.R. Hejazi Artificial Immune System for Single Machine …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001166,, VVooll.. 2277,, NNoo.. 22

Delivery

Costs
Classes

Due Date
Subclass

Number of the solution in
which

Ave. of CPU time
(s)

ࡿࡵିࡿ

ࡿࡵ
 (%)

ࡿିࡿࡵ

ࡿ
 (%)

AIS<SA AIS=SA SA<AIS SA AIS Avg. max Avg. max
3 19 1 0 3.963 17.211 108.856 595.625 0 0

B

1 20 0 0 9.941 39.466 19.169 93.312 0 0

2 20 0 0 10.794 31.236 28.379 89.023 0 0

3 19 1 0 6.759 17.689 42.434 187.731 0 0

Table 2 shows that the AIS algorithm has found a
better solution, less objective function than SA
algorithm in 450 (93.75%) problems, and its
objective function is equal to SA for 18 (3.75%)
problems; hence, AIS has solved 97.5% of all
problems with less equal total cost with respect to
SA; SA has presented a better solution for only
2.5% of problems. However, the average run time

of AIS is larger than SA. Column
ௌିூௌ

ூௌ
 shows

the deviation of SA from AIS when AIS has
presented the better result than SA; Column
ூௌିௌ

ௌ
 shows the deviation of AIS from SA when

SA has presented the better result than AIS. The
average deviation of SA from AIS for 93.75% of
problems, for which AIS has presented better
result than SA, is 26.04%, while the average
deviation of AIS from SA for 2.5% of problems
that SA has presented better result than AIS, is
0.20%. The maximum deviation for SA and AIS
is 595.63% and 5.69% respectively. These results
shows that AIS is more efficient than SA.
It is obvious from Table 2 that problems in class
B has more average run time, for both SA and
AIS, than problems in class A. So, as delivery
costs increase, more time was required until the

stopping criteria hold. In general, the
ࡿࡵିࡿ

ࡿࡵ

value for subclass 3 is greater than subclass 2,
and for subclass 2 is greater than subclass 1.
Therefore, as due dates increase, the deviation of
SA from AIS increases.

5. Conclusion
This paper presents an AIS algorithm for the
scheduling and batching a set of jobs on a single
machine with batch setup time for delivery to
customers. In order to evaluate the performance
of the AIS algorithm, computational tests are
used. The computational results show that the
proposed AIS framework is more efficient than
the MINLP and the SA proposed by [22].
Considering some constraints such as the number
of vehicle and capacity for each vehicle, other
machine configurations for a manufacturer, such
as the parallel machine or flow shop, routing
delivery method, instead of directing delivery
method, can be suggested for future works. In

addition, another function for the total costs, such
as total weighted lateness and delivery costs are
suggested as well.

References
[1] Chen ZL. Integrated production and

outbound distribution scheduling: review and
extensions, Operations Research, Vol. 58,
No.1, (2010), pp. 130-148.

[2] Mazdeh MM, et al. Single-machine batch

scheduling minimizing weighted flow times
and delivery costs, Applied Mathematical
Modelling, Vol. 35, No. 1, (2011), pp. 563-
570.

[3] Hall NG, CN Potts. Supply chain scheduling:

Batching and delivery, Operations Research,
Vol. 51, No. 4, (2003), pp. 566-584+674.

[4] Rasti-Barzoki M, Hejazi SR. Minimizing the

weighted number of tardy jobs with due date
assignment and capacity-constrained
deliveries for multiple customers in supply
chains, European Journal of Operational
Research, Vol. 228, No. 2, (2013), pp. 345-
357.

[5] Rasti-Barzoki M, Hejazi SR. Pseudo-

polynomial dynamic programming for an
integrated due date assignment, resource
allocation, production, and distribution
scheduling model in supply chain
scheduling, Applied Mathematical
Modelling, (2015).

[6] Rasti-Barzoki M, Hejazi SR, Mazdeh MM.

A Branch and Bound Algorithm to Minimize
the Total Weighed Number of Tardy Jobs
and Delivery Costs. Applied Mathematical
Modelling, Vol. 37, No. 7, (2013), pp. 4924-
4937.

[7] Moore JM. An n job, one machine

sequencing algorithm for minimizing the

106 M. Rasti-Barzoki, A. Kourank Beheshti & S.R. Hejazi Artificial Immune System for Single Machine …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001166,, VVooll.. 2277,, NNoo.. 22

number of late jobs, Management Science,
Vol. 15, No. 1, (1968), pp. 102-109.

[8] Karp RM. Reducibility among combinatorial

problems, Springer, (1972).

[9] Sahni SK. Algorithms for scheduling
independent tasks, Journal of the ACM
(JACM), Vol. 23, No. 1, (1976), pp. 116-
127.

[10] Gens GV, Levner EV. Discrete optimization

problems and efficient approximate
algorithms, Engineering Cybernetics, Vol.
17, No. 6, (1979), pp. 1-11.

[11] Gens GV, Levner EV. Fast approximation

algorithm for job sequencing with deadlines.
Discrete Applied Mathematics, Vol. 3, No. 4,
(1981), pp. 313-318.

[12] M’Hallah R, Bulfin R. Minimizing the

weighted number of tardy jobs on a single
machine, European Journal of Operational
Research, Vol. 145, No. 1, (2003), pp. 45-56.

[13] M’Hallah R, Bulfin R. Minimizing the

weighted number of tardy jobs on a single
machine with release dates, European
Journal of Operational Research, Vol. 176,
No. 2, (2007), pp. 727-744.

[14] Hochbaum DS, Landy D. Scheduling with

batching: minimizing the weighted number
of tardy jobs, Operations Research Letters,
Vol. 16, No. 2, (1994), pp. 79-86.

[15] Brucker P, Kovalyov MY. Single machine

batch scheduling to minimize the weighted
number of late jobs, Mathematical Methods
of Operations Research, Vol. 43, No. 1,
(1996), pp. 1-8.

[16] Steiner G, Zhang R. Minimizing the

weighted number of late jobs with batch
setup times and delivery costs on a single
machine, Multiprocessor Scheduling, (2007),
pp. 85-98.

[17] Steiner G, Zhang R. Approximation

algorithms for minimizing the total weighted
number of late jobs with late deliveries in
two-level supply chains, Journal of
Scheduling, Vol. 12, No. 6, (2009), pp. 565-
574.

[18] Assarzadegan P, Rasti-Barzoki M.
Minimizing sum of the due date assignment
costs, maximum tardiness and distribution
costs in a supply chain scheduling problem,
Applied Soft Computing.

[19] Rui Z, et al. An ant colony algorithm for job

shop scheduling problem with tool flow,
Proceedings of the Institution of Mechanical
Engineers, Part B, Journal of Engineering
Manufacture, (2014), pp.
0954405413514398.

[20] Raja K, et al. Earliness-tardiness scheduling

on uniform parallel machines using
simulated annealing and fuzzy logic
approach, Proceedings of the Institution of
Mechanical Engineers, Part B, Journal of
Engineering Manufacture, Vol. 222, No. 2,
(2008), pp. 333-346.

[21] Bathrinath S, et al. An improved meta-

heuristic approach for solving identical
parallel processor scheduling problem,
Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering
Manufacture, (2015), pp.
0954405414564410.

[22] Mahdavi Mazdeh M, Hamidinia A,

Karamouzian A. A mathematical model for
weighted tardy jobs scheduling problem with
a batched delivery system, International
Journal of Industrial Engineering
Computations, Vol. 2, No. 3, (2011), pp.
491-498.

[23] Steiner G, Zhang R. Minimizing the

weighted number of tardy jobs with due date
assignment and capacity-constrained
deliveries, Annals of Operations Research,
Vol. 191, No. 1, (2011), pp. 171-181.

[24] Assarzadegan P, Rasti-Barzoki M.

Minimizing sum of the due date assignment
costs, maximum tardiness and distribution
costs in a supply chain scheduling problem,
Applied Soft Computing, Vo. 47, (2016), pp.
343-356.

[25] Hassanzadeh A, Rasti-Barzoki M,

Khosroshahi H. Two new meta-heuristics for
a bi-objective supply chain scheduling
problem in flow-shop environment, Applied
Soft Computing, Vol. 49, (2016), pp. 335-
351.

107 M. Rasti-Barzoki, A. Kourank Beheshti & S.R. Hejazi Artificial Immune System for Single Machine …

IInntteerrnnaattiioonnaall JJoouurrnnaall ooff IInndduussttrriiaall EEnnggiinneeeerriinngg && PPrroodduuccttiioonn RReesseeaarrcchh,, JJuunnee 22001166,, VVooll.. 2277,, NNoo.. 22

[26] Dasgupta D, Yu S, Nino F. Recent advances
in artificial immune systems: models and
applications, Applied Soft Computing, Vol.
11, No. 2, (2011), pp. 1574-1587.

[27] Amin-Tahmasbi H, Tavakkoli-Moghaddam

R. Solving a bi-objective flowshop
scheduling problem by a Multi-objective
Immune System and comparing with
SPEA2+ and SPGA. Advances in
Engineering Software, Vol. 42, No. 10,
(2011), pp. 772-779.

[28] Reisi M, Moslehi G. Minimizing the number

of tardy jobs and maximum earliness in the
single machine scheduling using an artificial
immune system, The International Journal of
Advanced Manufacturing Technology, Vol.
54, Nos. 5-8, (2011), pp. 749-756.

[29] Chandrasekaran M, et al. Solving job shop

scheduling problems using artificial immune
system, The International Journal of
Advanced Manufacturing Technology, Vol.
31, Nos. 5-6, (2006), pp. 580-593.

[30] Ge HW, Sun L, Liang YC. Solving job-shop

scheduling problems by a novel artificial
immune system, in AI 2005: Advances in
Artificial Intelligence, Springer, (2005), pp.
839-842.

[31] Engin O, Döyen A. A new approach to solve

hybrid flow shop scheduling problems by
artificial immune system, Future Generation
Computer Systems, Vol. 20, No. 6, (2004),
pp. 1083-1095.

[32] Coello CAC, Rivera DC, Cortes NC. Use of

an artificial immune system for job shop
scheduling, in Artificial Immune Systems,
Springer, (2003), pp. 1-10.

[33] Gao J. A novel artificial immune system for

solving multiobjective scheduling problems
subject to special process constraint,
Computers & Industrial Engineering, Vol.
58, No. 4, (2010), pp. 602-609.

[34] Kumar A, et al. Psycho-Clonal algorithm

based approach to solve continuous flow
shop scheduling problem, Expert Systems
with Applications, Vol. 31, No. 3, (2006),
pp. 504-514.

[35] Agarwal R, Tiwari M, Mukherjee S.
Artificial immune system based approach for
solving resource constraint project
scheduling problem, The International
Journal of Advanced Manufacturing
Technology, Vol. 34, Nos. 5-6, (2007), pp.
584-593.

[36] Diana ROM, et al. An immune-inspired

algorithm for an unrelated parallel machines’
scheduling problem with sequence and
machine dependent setup-times for
makespan minimization, Neurocomputing,
Vol. 163, (2015), pp. 94-105.

