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scheduling on a single machine under the batch 
availability assumption (distribution scheduling) 
with several objectives including the sum of flow 
times, maximum lateness, and the number of late 
jobs. Batch availability assumption means that all 
the jobs forming a batch become available for 
later processing or dispatch only when the entire 
batch has been processed [3-6]. They presented 
dynamic-programming algorithms for 
minimizing the mentioned objectives with 
delivery costs when the batches are to be 
delivered to several customers separately [3]. 
This paper addresses the minimizing sum of total 
weighted number of tardy jobs and delivery costs 
for multi-customer in a single machine 
environment and presents an AIS algorithm for 
solving it for the first time. The minimum 
number of tardy jobs, i.e., 1//∑ ܷ , is obtained 
by the polynomial Moore's algorithm for the 
single machine environment [7]. The weighted 
version of problem, i.e., 1//∑ݓ ܷ, is hard [8]. 
For 1//∑ݓ ܷ A, a Fully Polynomial Time 
Approximation Scheme, FPTAS, was provided 
by Sahni [9]. Later, Gens and Levner improved it 
twice [10, 11]. In addition, Hallah and Bulfin 
developed Branch and Bound, B&B, method for 
this problem considering zero ready time and 
non-zero ready time [12, 13]. Hochbaum and 
Landy proposed a dynamic programming 
algorithm for the batching version of the 
problem, i.e., 1/ݓ∑/ݏ ܷ , in which jobs are 
processed in batches which require setup time ݏ 
[14], and later Brucker and Kovalyov improved it 
[15]. Nevertheless, none of these studies 
considered the delivery costs. Steiner and Zhang 
addressed the similar problem, i.e., scheduling 
and batching problem delivery to a customer, 
considering the minimizing sum of the total 
weighted number of tardy jobs and delivery costs 
on the single machine with batch setup time; they 
presented optimal properties and a pseudo-
polynomial time DP algorithm for the optimal 
solution [16]. Also, they presented a pseudo-
polynomial DP and an FPTAS for restricted case 
of multicustomer, where tardy jobs are delivered 
separately at the end of schedule [17]. Recently, 
Assarzadegan and Rasti-Barzoki [18] have 
studied the problem of minimizing the maximum 
tardiness, due date assignment, and delivery costs 
on a single machine. They presented two 
mathematical programming models and two 
metaheuristic algorithms, an adaptive genetic 
algorithm, and a parallel-simulated annealing 
algorithm, for solving it. 
Some researchers have applied metaheuristic 
algorithms to solve scheduling problem [19-21]. 

In this research, we present an AIS method for 
this problem and compare it with SA and MINLP 
approaches introduced by Mazdeh et al. using 
computational test [22]. 1/ݏ/ܸ	ሺ∞,∞ሻ, /ݐܿ݁ݎ݅݀
݇/∑ ݓ


ୀଵ ܷ  ∑ ߠ


ୀଵ ܤ  is representation of 

our problems regarding notation that Chen [1] 
introduced for these types of problems. This 
notation means that there is the single machine 
for processing jobs with batch setup time, ݏ, and 
sufficient vehicle by unlimited capacity and 
directing delivery method for sending the batches 
to ܭ customers. Directing delivery method means 
that orders are transmitted to each customer 
without the routing problem. ∑ ݓ


ୀଵ ܷ  is the 

total weighted number of tardy jobs and 
∑ ߠ

ୀଵ ܤ  is the total delivery costs where ߠ 

and ܤ are delivery costs unit and the number of 
batches for each customer, respectively. Chen [1] 
presented an important review on the literature 
regarding integrated production and distribution 
scheduling models. So, we do not go into any 
more detail.  
The rest of this paper is organized as follows: 
Section 2 contains the problem definition. AIS 
structure and our proposed algorithms are 
provided in section 3. Section 4 describes and 
analyzes the computational results. And, the last 
section contains our conclusions. 
 

2. Notations and Problem Definition 
2-1. Notations 
Indexes 
݆ Job index 
݇ Customer index 
Parameters: 
݊ Number of jobs 
 Number of customers ܭ
  Batch setup time for jobs belong toݏ
customer ݇ 
 ݆  Processing time of job

݀ Due date of job ݆ 
 ݆  Weight of jobݓ
  Delivery costs for sending batch toߠ
customer ݇ 
Decision variables: 
ܷ One if job ݆ be tardy and zero otherwise  
 ݇  Number of batches for customerܤ
Immune system notations: 
ܰ Number of iteration in local search 
ܲܵ Population size 
ߙ   Local optimum factor in iteration ݅ 
 Mutation rate  ߪ
݂  Affinity value of antibody 
 Control factor of decay  ߜ
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2-2. Problem definition 
There are ܭ customers and one manufacturer in 
which each customer ݇ orders ݊݇ jobs to the 
manufacturer and ݊ ൌ ∑ ݊


ୀଵ  is the number of 

jobs. No job can be preempted. Each job has an 
important coefficient ݆ݓ. It is assumed that jobs 
need one operation and manufacturer does it by a 
single machine, with ݆ processing time. The due 

date of job ݆ is ݆݀. Jobs are processed and sent in 
batches to each customer. A batch can contain jobs 
only for the same customer. This assumption is 
common in literature for example see [4-6, 16, 17, 
23-25]. We assume that each batch has a sequence-
independent-batch setup time ݇ݏ. There is a 
sufficient number of vehicles, and the delivery 
cost is independent of batch size, and it is shown 
by ݇ߠ for customer ݇	for	each	trip	. The number 
of batches for customer ݇ is represented by ݇ܤ 
which is a decision variable. The objective is to 
minimize the sum of the total weighted number of 
tardy jobs and delivery costs. So, as mentioned 
earlier, this problem can be shown by 1/ݏ/
ܸ	ሺ∞,∞ሻ, ∑/݇/ݐܿ݁ݎ݅݀ ݓ


ୀଵ ܷ  ∑ ߠ


ୀଵ  .ܤ

 
3. Artificial Immune System 

The immune system is an information processing 
and self-learning system that offers inspiration to 
design AIS. In the last decade, the immune 
system has drawn significant attention as a 
potential source of inspiration for novel 
approaches to solve complex computational 
problems [26]. Some researchers used the AIS to 
solve the scheduling class problems [27-33]. In 
this paper, a metaheuristic algorithm based on 
AIS for the first time is used to minimize the total 
weighted number of tardy jobs and delivery costs 
in two-level supply chain. 
There are several immune algorithms such as 
negative selection algorithm, clonal selection 
algorithm, and artificial immune networks. In this 
paper, solution procedure is based on the clonal 
selection algorithm, in which only the highest 
affinity antibodies proliferate. In order to 
understand the AIS, some preliminary biological 
terms are required to be characterized [34, 35]: 
Immune cells: B-cells and T-cells are the two 
main groups of immune cells. These cells help 
recognize an almost limitless range of anti-genic 
patterns. 
Antigens (Ag): These are disease-causing 
elements that are divided into two types of 
antigens: self and non-self. Non-self-antigens are 
disease-causing elements, whereas self-antigens 
are harmless to the body. 

Antibodies (Ab): It is a molecule produced by a 
B-cell in response to an antigen and has the 
particular property of combining specifically with 
the antigen, which induced its formation. 
In the biological process, when an antigen 
contacts with the immune system, it releases a set 
of B-cells, present in the immunological memory, 
with the function of identifying and eliminating 
the antigens. Those B-cells that recognize the 
antigens with a minimal affinity are chosen for 
cloning and the number of clones of a particular 
cell is defined according to its antigen affinity. 
The cells undergo somatic hypermutation after 
the cloning process in order to try to eliminate the 
antigen. The cloning and mutation processes are 
repeated until the antigen is eliminated. Finally, 
the cells with the highest affinity are included in 
the immunological memory[36]. 
Hypermutation and receptor editing are two 
important characteristics of the immune system. 
They help in the maturation of the progenies, as 
antibodies present in memory response must have 
a higher affinity than those in the earlier primary 
response. Hypermutation is similar to the 
mutation operator of the genetic algorithm. The 
difference lies in the rate of modification that 
depends on the antigenic affinity.  
In general, the antibodies with lower antigenic 
affinity are hypermutated at a higher rate as 
compared to the antibodies with higher antigenic 
affinity. This phenomenon is known as receptor 
editing, which governs the hypermutation. The 
main task of hypermutation is to guide toward 
local optimal, whereas receptor editing helps to 
escape the local optima. 
In the rest of this section, our AIS properties are 
introduced in detail. 
3-1. Encoding schema 
In the proposed algorithm, an antibody includes 
some genes, such that each gene shows the batch 
number of each job. This encoding scheme is 
shown in Figure 1. This Figure shows that job 1 
places in batch 5, job 2 places in batch 2, and the 
other jobs in the similar way. 
 

Jobs: 1 2 3 4 5 6 7 8 9 10
Batches: 5 2 2 4 1 3 5 2 1 3 

Fig. 1. Antibody encoding 
 

As mentioned before, [22] proposed simulated 
annealing algorithm to solve this problem. In 
their algorithm, solutions are encoded by a matrix 
depicted in Figure 2 where the rows represent the 
batches and the columns represent the customers. 
For instance, if the element in row 2 and column 
1 is one, the first order of customer 1 is assigned 



102 M. Rasti-Barzoki, A. Kourank Beheshti & S.R. Hejazi Artificial Immune System for Single Machine … 
 

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  IInndduussttrriiaall  EEnnggiinneeeerriinngg  &&  PPrroodduuccttiioonn  RReesseeaarrcchh,,  JJuunnee  22001166,,  VVooll..  2277,,  NNoo..  22  

to batch 2. Therefore, for each solution, a matrix 
is formed with ݊ଶelements, whereas base on our 
encoding, for each solution, an array is formed 
with ݊ elements. 
 

 
Decision variables 
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Fig. 2. Solution encoding of SA[22] 
 
3-2. Affinity calculation 
In the proposed algorithm, it is needed to 
calculate affinity of antibodies. Since the goal is 
to minimize the objective function and the 
affinity value should be maximized in the AIS 
algorithms, the minus objective function value is 
considered as the affinity value. 
3-3. The proposed algorithm 
The main framework of the proposed algorithm is 
described as follows: 

1. Initialization. 
2. While (has not met stop criterion) do 
3. Local search. 
4. Proliferation. 
5. Hypermutation. 
6. New generation. 
7. End. 

Each steps of this algorithm is described as 
follows: 
I. Initialization 
In this stage, a random initial population of size 
ܲܵ is created. For each antibody, the value of each 
gene is determined randomly in the range ሾ1, ݊ሿ in 
which the value of each gene is unique. In this 
paper, with the help of initial experiment, the size 
of population (ܲܵ) is considered equal to 12.  
II. Local search  
For each antibody, the following process is done 
ܰ times: 
One gene is selected randomly. Then, the value 
of this gene that represents the related batch is 
changed to a new batch that includes either no 
job or the other jobs of the customer of that gene; 
consequently, the new solution is formed. Then, 
the affinity value of the new solution is 
calculated. If the blown equation is satisfied, the 
antibody will be replaced by the new solution. 
 
ܨܣ ܸ௪

ܨܣ ܸ
 1  ߙ  (1)

 
Where ܨܣ ܸ is the affinity value of antibody, 
ܨܣ ܸ௪ is the affinity value of the new 

solution, and ߙ is the local optimum factor in 
the iteration. This factor leads to escape 
algorithm from local optimum. At first, ߙ value 
is equal to zero; when the best solution is not 
improved in three consecutive iterations, for 
the first time, its value will be equal to initial 
value. In each iteration, ߙ value is decreased 
base on equation (2) as follows: 
 

ାଵߙ ൌ ߙ െ
௧ߙ

ܰܶܫ െ ܨܫ  1
 (2)

 
Where ߙାଵ is the local optimum factor in 
iteration ݅    is the local optimum factor inߙ ,1
iteration ݅, α୧୬୧୲୧ୟ୪ is the initial value of local 
optimum factor, ܰܶܫ is the number of iteration, 
and ܨܫ is the iteration that the value of local 
optimum factor will be equal to initial value for 
the first time. 
With this equation, the value of local optimum 
factor in the last iteration will be equal to zero. 
As a result, the diversity in the primary iterations 
is greater than the last iterations. In this paper, 
with the help of initial experiment, the values of 
 ௧ and ܰ are considered equal to 0.005 andߙ
80, respectively. 
III. Proliferation 
In this process, some clones are produced from 
each antibody. As in Reisi and Moslehi[28], the 
following equation is used to calculate the 
number of clones that each antibody produces. 
 
݊ ൌ ܲܵ ൈ (3) ܨܨܣ
 
Where ݊ is the number of clones, ܲܵ is the size 
of the initial population, and ܨܨܣ is the 
cumulative probability of the antibody. For each 
antibody, ܨܨܣ is obtained by dividing its affinity 
value by the sum of all the antibody affinities. 
IV. Hypermutation 
After the proliferation stage, the mutation 
operator is performed for each clone. In mutation 
procedure, one gene is selected randomly. Then, 
the value of this gene that represents its batch is 
changed to a new batch that includes either no 
job or the other jobs of the customer of that gene. 
As in Kumar et al.[34] and Agarwal et al.[35], the 
mutation rate of each clone is calculated based on 
the following equation: 
 
ߪ ൌ expሺെߜ ൈ ݂ሻ (4)
 
Where ߪ is the mutation rate, ߜ is the control 
factor of decay, and ݂ is the affinity value of 
antibody. In this paper, the value of ߜ is 
calculated based on equation (5): 
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ߜ ൌ െ
1

݂
 ̅ (5)

 
where ݂ ̅ is the average affinity value of the 
population.  
V. New population 
After the hypermutation process is done and the 
affinity of the hypermutated solutions are 
calculated, select the fixed number (݀) of best 
antibody for the next generation. In this paper, 
based on initial experiment, ݀ is considered equal 
to 40% of ܲܵ.  
VI. Stop criterion 
Using computational pre-test, the stop criterion is 
considered as follows: if the best solution is not 
improved after five consecutive iterations or after 
a total number of 200 iterations, the algorithm 
will be stopped. 
 

4. Computational Results 
In this section, in order to evaluate the 
performance of AIS, both the small- and 
medium-size problems are considered. The AIS 
and SA algorithms were coded using Matlab 
2009 and run on a computer with a 2.93 GHz 
CPU and a 2.00 GB RAM. The MINLP model 
was coded in GAMS and solved by BONMIN 
solver, because our pre-test shows BONMIN is 
the most efficient solver for solving the 
mentioned problem. In small and medium-size 
problems, we have compared results of the 
proposed algorithm with MINLP and SA, 
respectively. The details will be given in the 
following related subsections. 
4-1. Problems with  ൌ , ૠ	ࢊࢇ	 
The number of jobs in small-sized problems was 
set 4, 7	ܽ݊݀	10. The number of customers for 
each ݊ was defined by a uniform distribution in 
the interval ሾ1, ݊ሿ. Processing times, batch setup 
times, and job weights were randomly-generated 
integers from the uniform distribution defined on 
ሾ1	100ሿ, ሾ0	0.5̅ሿ, and ሾ1	100ሿ, respectively. 
Based on the batch delivery costs values, we 
generated two classes of problems, namely A and 
B, for each given number of the job. For class A 

and class B, the intervals that the delivery costs 
were generated randomly are ሾ0	ݓഥሿ and ሾ0	10ݓഥሿ, 
respectively. For each class, we generated three 
subclasses, namely 1, 2, and 3, based on the due 
dates values; therefore, we have six groups, 
namely A-1, B-1, A-2, B-2, A-3, B-3. For groups 
(A-1, B-1), (A-2, B-2), and (A-3, B-3), the 
intervals that the due dates values were generated 
randomly are ሾ0	0.5݊ሺ̅ݏ  ݏ̅	݊ሺ	ሻሿ, ሾ0̅   ሻሿ and̅
ሾ0	5݊ሺ̅ݏ   .ሻሿ, respectively̅
For each job number in each group, 10 problems 
were generated randomly. Hence, totally 180 
(3*2*3*10) problems in small-sized problems 
were being generated and solved. A 300-second 
time constraint was considered, and if the 
problem could not be solved regarding this 
constraint, then the procedure would no longer be 
used for that problem. The results of the 
experiment for small-sized problems are shown 
in Table 1. Column “Number of the solution in 
which” of Table 1 shows that for all problems, 
AIS has produced objective function, i.e., total 
cost, less or equal to MINLP model. In detail, 
AIS has produced objective value the same as 
MINLP for 67.22% of problems and absolutely a 
better result for 32.78% of problems.  
In problems with four jobs, both MINLP model 
and AIS algorithm have found the optimum 
solution for all problems in each group, but the 
average run time of AIS algorithm is smaller than 
the average run time of MINLP model for each 
group of four jobs. The average run time of 
problems with ݊ ൌ 4 is 0.38 second and 32.26 
seconds for AIS and MINLP model, respectively. 
In problems with 7 and 10 jobs, the average of 
deviation in A-3 is smaller than A-2 and is 
smaller than A-1 in A-2. This means that as the 
due dates decrease the difference between AIS 
and MINLP, objective function increases. In 
addition, the average of deviation in B-1 is 
smaller than A-1; in B-2, is smaller than A-2; in 
B-3, is smaller than A-3. Therefore, as delivery 
costs decrease the difference between AIS and 
MINLP, objective function increases.

 
Tab. 1. The result of experiment for small-sized problems, comparing AIS with MINLP 

݊ 
Delivery 

Costs 
Cclasses 

Due Date 
Subclass 

Number of the solution in which Ave. of CPU time (s) 

AIS<MINLP* AIS=MINLP MINLP<AIS MINLP AIS 

4 
A 

1 0 10 0 48.02 0.39 
2 0 10 0 41.62 0.37 
3 0 10 0 7.82 0.37 

B 
1 0 10 0 30.95 0.36 
2 0 10 0 50.21 0.36 
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݊ 
Delivery 

Costs 
Cclasses 

Due Date 
Subclass 

Number of the solution in which Ave. of CPU time (s) 

AIS<MINLP* AIS=MINLP MINLP<AIS MINLP AIS 

3 0 10 0 14.97 0.41 

7 

A 
1 8 2 0 - - 
2 6 4 0 - - 
3 0 10 0 - - 

B 
1 3 7 0 - - 
2 4 6 0 - - 
3 0 10 0 - - 

10 

A 
1 9 1 0 - - 
2 10 0 0 - - 
3 1 9 0 - - 

B 
1 9 1 0 - - 
2 8 2 0 - - 
3 1 9 0 - - 

*AIS<MINLP means that AIS has a better result (less total cost) than MINLP 
-Since some problems have not been solved within 300 seconds by GAMS, the ave. of CPU time could not 
calculated for them 
 
4-2. Problems with  ൌ , ૡ, 	ࢊࢇ	 
In this section, we have compared results of our 
proposed algorithm, i.e., AIS, with SA proposed 
by [22] in medium-sized problems. The number 
of jobs in medium-sized problems was set 
50, 80, 110, ܽ݊݀	140. All parameters were 

generated similar to the previous, but the number 
of problems for each job number in each group 
was set 20; hence, totally 480 (4*2*3*20) 
problems in medium-sized problems were 
generated. Table 2 shows the result of the 
computational test for this problems. 

 
Tab. 2. The result of experiment in medium-sized problems, comparing AIS with SA 

 
Delivery 

Costs 
Classes 

Due Date 
Subclass 

Number of the solution in 
which 

Ave. of CPU time 
(s) 

ࡿࡵିࡿ

ࡿࡵ
 (%) 

ࡿିࡿࡵ

ࡿ
 (%) 

AIS<SA AIS=SA SA<AIS SA AIS Avg. max Avg. max 

50 

A 

1 15 0 5 1.500 5.495 3.328 18.613 0.647 5.687
2 20 0 0 1.612 4.525 13.687 58.402 0.000 0.000

3 14 6 0 1.193 3.049 51.752 475.000 0.000 0.000

B 

1 18 0 2 3.548 4.639 2.738 10.109 0.041 0.768

2 16 0 4 2.840 5.031 1.992 10.634 0.043 0.412

3 14 6 0 2.402 3.123 16.253 156.690 0.000 0.000

80 

A 

1 20 0 0 2.645 12.279 8.976 15.738 0 0 

2 19 0 1 2.564 10.788 39.997 109.396 0.089 1.772

3 20 0 0 1.917 5.701 35.094 215.205 0 0 

B 

1 20 0 0 4.939 12.007 6.011 28.028 0 0 

2 20 0 0 4.428 12.196 8.645 61.892 0 0 

3 19 1 0 4.190 7.401 24.106 155.787 0 0 

110 

A 

1 20 0 0 4.022 22.207 14.758 42.654 0 0 

2 20 0 0 3.810 15.892 30.030 95.338 0 0 

3 18 2 0 2.895 9.891 50.717 300.000 0 0 

B 

1 20 0 0 7.781 22.657 10.256 44.755 0 0 

2 20 0 0 7.302 20.461 13.377 75.304 0 0 

3 19 1 0 5.488 11.302 34.832 218.156 0 0 

140 A 
1 20 0 0 5.037 34.630 14.564 72.348 0 0 

2 20 0 0 5.250 26.626 45.090 88.867 0 0 
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Delivery 

Costs 
Classes 

Due Date 
Subclass 

Number of the solution in 
which 

Ave. of CPU time 
(s) 

ࡿࡵିࡿ

ࡿࡵ
 (%) 

ࡿିࡿࡵ

ࡿ
 (%) 

AIS<SA AIS=SA SA<AIS SA AIS Avg. max Avg. max 
3 19 1 0 3.963 17.211 108.856 595.625 0 0 

B 

1 20 0 0 9.941 39.466 19.169 93.312 0 0 

2 20 0 0 10.794 31.236 28.379 89.023 0 0 

3 19 1 0 6.759 17.689 42.434 187.731 0 0 
 
Table 2 shows that the AIS algorithm has found a 
better solution, less objective function than SA 
algorithm in 450 (93.75%) problems, and its 
objective function is equal to SA for 18 (3.75%) 
problems; hence, AIS has solved 97.5% of all 
problems with less equal total cost with respect to 
SA; SA has presented a better solution for only 
2.5% of problems. However, the average run time 

of AIS is larger than SA. Column 
ௌିூௌ

ூௌ
 shows 

the deviation of SA from AIS when AIS has 
presented the better result than SA; Column 
ூௌିௌ

ௌ
 shows the deviation of AIS from SA when 

SA has presented the better result than AIS. The 
average deviation of SA from AIS for 93.75% of 
problems, for which AIS has presented better 
result than SA, is 26.04%, while the average 
deviation of AIS from SA for 2.5% of problems 
that SA has presented better result than AIS, is 
0.20%. The maximum deviation for SA and AIS 
is 595.63% and 5.69% respectively. These results 
shows that AIS is more efficient than SA. 
It is obvious from Table 2 that problems in class 
B has more average run time, for both SA and 
AIS, than problems in class A. So, as delivery 
costs increase, more time was required until the 

stopping criteria hold. In general, the 
ࡿࡵିࡿ

ࡿࡵ
 

value for subclass 3 is greater than subclass 2, 
and for subclass 2 is greater than subclass 1. 
Therefore, as due dates increase, the deviation of 
SA from AIS increases. 
 

5. Conclusion 
This paper presents an AIS algorithm for the 
scheduling and batching a set of jobs on a single 
machine with batch setup time for delivery to 
customers. In order to evaluate the performance 
of the AIS algorithm, computational tests are 
used. The computational results show that the 
proposed AIS framework is more efficient than 
the MINLP and the SA proposed by [22]. 
Considering some constraints such as the number 
of vehicle and capacity for each vehicle, other 
machine configurations for a manufacturer, such 
as the parallel machine or flow shop, routing 
delivery method, instead of directing delivery 
method, can be suggested for future works. In 

addition, another function for the total costs, such 
as total weighted lateness and delivery costs are 
suggested as well. 
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